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Abstract: Detecting transformer faults is critical to avoid the undesirable loss of transformers from
service and ensure utility service continuity. Transformer faults diagnosis can be determined based
on dissolved gas analysis (DGA). The DGA traditional techniques, such as Duval triangle, Key
gas, Rogers’ ratio, Dornenburg, and IEC code 60599, suffer from poor transformer faults diagnosis.
Therefore, recent research has been developed to diagnose transformer fault and the diagnostic
accuracy using combined traditional methods of DGA with artificial intelligence and optimization
methods. This paper used a novel meta-heuristic technique, based on Gravitational Search and Dipper
Throated Optimization Algorithms (GSDTO), to enhance the transformer faults’ diagnostic accuracy,
which was considered a novelty in this work to reduce the misinterpretation of the transformer faults.
The robustness of the constructed GSDTO-based model was addressed by the statistical study using
Wilcoxon’s rank-sum and ANOVA tests. The results revealed that the constructed model enhanced
the diagnostic accuracy up to 98.26% for all test cases.

Keywords: diagnostic accuracy; transformer faults; Gravitational Search; artificial intelligence

MSC: 68T07; 68T10; 68T20

1. Introduction

The power transformer considers one of the most vital elements in the electrical power
system, as the wrong or repeated disconnection leads to the loss of a lot of profits for the
electricity companies [1,2]. The undesirable outage of the transformer from the electrical
power system occurs as a result of the exposure of the insulation system, which is the insula-
tion oil and insulation paper, to various stresses, whether electrical, thermal, or mechanical.
These stresses lead to insulation damage and rapid deterioration, which requires early
prediction of the deterioration of the insulation condition inside the transformer. Dissolved
gas analysis (DGA) is a common technique that was used for detecting and exploring the
transformer faults based on the dissolved gases concentrations [3–5].
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Several traditional DGA techniques, such as Key gases, Dornenburg, Rogers’ ra-
tios, IEC code, and Duval triangle, contribute to interpreting the cause of transformer
faults [6–10]. The DGA methods above were developed to diagnose the transformer faults
based on the combustible gases’ ratios [4]. The combustible gases are Hydrogen (H2),
Methane (CH4), Ethan (C2H6), Ethylene (C2H4), and Acetylene (C2H2). Some of these
methods used four ratios between the five gases, such as Dornenburg and Rogers’ four
ratios and the other methods used three ratios, such as IEC60599 code [11–13]. The Duval
triangle method is one of the most common DGA techniques which has been used until
now for diagnosing transformer faults, which is based the diagnose technique on the three
gases (Methane (CH4), Ethylene (C2H4), and Acetylene (C2H2)) [8,9]. The limitation of
the traditional DGA techniques is the failure to interpret the transformer faults when the
cases are out of the code. New graphical DGA techniques were developed to enhance the
diagnostic accuracy of the transformer faults, such as Pentagon [14–16] and heptagon [3].

Researchers have recently merged artificial intelligence with the traditional DGA
techniques to enhance its diagnostic accuracy. Artificial Neural Networks (ANNs) were
utilized to build a smart system to enhance the diagnostic accuracy by comparing the
output of five traditional DGA techniques to identify the dominant transformer faults.
In addition, the ANN was used in research for the same purpose [17–21]. Fuzzy logic was
also merged with traditional DGA techniques to enhance diagnostic accuracy, and several
publications were reported [22,23]. A neuro-fuzzy was developed in [24] to enhance the
transformer fault diagnostic accuracy. Support vector machine (SVM) and other classifiers
were also used based on the feature selection for each fault to diagnose the transformer
faults [25,26].

Several kinds of research addressed the utilization of optimization techniques with
DGA to adapt the ratio limits of the traditional IEC Code and Rogers’ ratio methods to
enhance the diagnostic accuracy of the transformer faults. The Particle Swarm Optimization
(PSO) algorithm in [27] was used to modify the limits of the ratios among the gases to
overcome the diagnostic failure of the transformer faults. It is also addressed in several
works, as in [28,29] that used PSO with the DGA techniques to enhance the transformer
faults’ diagnostic accuracy. Some other optimization algorithms were merged with the DGA
to increase the fault diagnostic accuracy, such as Teaching learning-based optimization [30],
adaptive dynamic meta-heuristics [2], and Grey Wolf Optimization [12].

This paper uses a novel Meta-heuristic algorithm, based on the Gravitational Search
and Dipper Throated Optimization Algorithms (GSDTO), to enhance the diagnostic ac-
curacy of the transformer faults’ misinterpretation with the other techniques, whether
the traditional DGA or that merged the AI with the traditional DGA methods. As the
Dipper Throated Optimization (DTO) algorithm relies on numerous variables in the opti-
mization process, its performance degrades. In addition, the convergence of the algorithm
is premature. However, the satisfactory balance between exploration and exploitation
is a considerable advantage. To take advantage of this benefit, the suggested approach
employs the DTO algorithm. Gravitational Search Algorithm (GSA), despite its simplicity
and outstanding balance between exploration and exploitation, has disadvantages such as
a low exploration rate and performance decrease when a large number of local optimum
solutions exist. Utilizing the dipper throated optimizer, this study uses this algorithm to
take advantage of its benefits while compensating for its limitations.

The proposed model uses the raw gases’ concentration regardless of the gases’ ratios
considered in the conventional DGA techniques, which resulted in a wrong diagnosis of
the fault due to the out-of-code cases. ANOVA statistical analysis is applied to investigate
the stability of the proposed model with the uncertainty that occurred in the input data.
The results and the statistical analysis indicated the robustness of the constructed algorithm
and enhanced the diagnostic accuracy of the transformer faults for the testing samples.
The dataset employed in this work consists of 460 samples collected from the literature and
the Egyptian Electricity Holding Company central chemical laboratory.
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The proposed GSDTO enhances the Long Short Term Memory (LSTM) classification
method parameters. Excellent diagnostic accuracy of the transformer faults is achieved
based on the proposed GSDTO+LSTM classification model. A binary version of the pro-
posed (GSDTO) algorithm is first used for feature selection from the tested dataset. The bi-
nary GSDTO (bGSDTO) algorithm is tested first compared to PSO [31], Grey Wolf Optimizer
(GWO) [32], Whale Optimization Algorithm (WOA) [33], Biogeography-Based Optimizer
(BBO) [34], Firefly Algorithm (FA) [35], Genetic Algorithm (GA) [36], and Bat Algorithm
(BA) [37]. Then, a classifier based on the suggested GSDTO algorithm and LSTM method
is examined for the tested dataset. Comparative analysis is performed between the GS-
DTO+LSTM algorithms and WOA+LSTM, GWO+LSTM, GA+LSTM, and PSO+LSTM
algorithms. The GSDTO+LSTM algorithm’s diagnostic accuracy is also examined using
randomly selected data from the total number of samples.

This work’s main contributions can be expressed as follows:

• A novel Gravitational Search Dipper Throated Optimization Algorithm (GSDTO)
is proposed.

• A binary GSDTO algorithm, a binary version of the proposed algorithm, is applied for
feature selection from the tested dataset.

• A GSDTO+LSTM classifier, based on the proposed GSDTO algorithm and LSTM
method, is developed to improve the tested dataset classification accuracy.

• The GSDTO algorithm’s statistical difference is tested by Wilcoxon’s rank-sum and
ANOVA tests.

• The GSDTO algorithm is used to improve the LSTM classification method performance for
classifying purposes which can be applied in a new high voltage engineering application.

• The binary GSDTO algorithm and the LSTM-based classification algorithm can be
generalized and tested for various types of datasets.

The organization of this paper is as follows. Materials and methods as presented in
Section 2. Section 3 discusses the proposed GSDTO algorithm, binary GSDTO algorithm,
and the GSDTO+LSTM-based model. Section 4 shows the experimental results and analysis.
The validation and discussion of the proposed GSDTO-based model compared to state-of-
the-art models are discussed in this section. In Section 6, the conclusion of this work and
the future directions are presented.

2. Materials and Methods
2.1. Distribution of the Data

A total number of 460 samples were used in this study. A number of 386 samples for
training and 74 samples for testing purposes were used to investigate the robustness of the
constructed model. The collection of samples was from the central chemical laboratory of
Egyptian Electricity Holding Company and literature. The dataset has several attributes
including Hydrogen (H2), Methane (CH4), Ethane (C2H6), Ethylene (C2H4), Acetylene
(C2H2), Power factor, Interfacial V, Dielectric rigidity, Water content, Health index, Life
expectation, Status, Category (ACT), and Time. Table 1 shows the distribution of training
data samples. The data samples in the testing process are categorized as 43 samples for
Partial Discharge (PD), 69 samples for low energy discharge (D1), 115 samples for high
energy discharge (D2), 81 samples for a low thermal fault (T1), 24 samples for a medium
thermal fault (T2), and 54 samples for a high thermal fault (T3). Table 2 illustrates the
distribution of testing samples based on the source of the data and the fault types. The data
samples in the testing process are categorized as seven samples for PD, 13 samples for D1,
24 samples for D2, 16 samples for T1, 4 samples for T2, and 10 samples for T3.
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Table 1. Distribution of the 386 training samples according to the fault types and the references.

Ref. PD D1 D2 T1 T2 T3 Total

[8] 2 0 0 3 0 0 5
[9] 9 24 48 0 0 18 99
[25] 0 2 1 1 3 1 8
[38] 27 42 55 70 18 28 240
[39] 1 0 5 2 0 1 9
[40] 3 0 4 4 3 5 19
[41] 1 1 2 1 0 1 6
Total 43 69 115 81 24 54 386

Table 2. The distribution of the 74 testing samples according to the fault types and the references.

Ref. PD D1 D2 T1 T2 T3 Total

[9] 1 6 8 1 1 17
[38] 6 6 11 11 3 2 39
[40] 2 1 3
[41] 1 1
[42] 2 2
[43] 1 1
[44] 1 1 1 3
[45] 1 1
[46] 2 1 3 6
[47] 1 1
Total 7 13 24 16 4 10 74

2.2. Machine Learning

One type of classification and prediction model is an artificial neural network (ANN).
Complex interactions between data patterns or sets of cause-and-effect variables are mod-
eled with artificial neural networks (ANN). These techniques may include transient de-
tection and pattern recognition. ANN is an information processing pattern composed of
neurons that work together to solve problems similar to the brain. When developing an
algorithmic solution and extracting the structure from existing data, a neural network is
useful [48].

Random forest, a technique based on statistical learning theory, offers a number of
benefits, including fewer configurable parameters, greater prediction precision, and in-
creased generalization capacity. It takes several samples from the original sample using
the bootstrap sampling method, constructs decision tree models based on each bootstrap
sample, integrates multiple decision tree predictions, and determines the outcome through
a voting procedure [48].

The conclusions of the prediction algorithm utilizing the k-NN technique are based
on historical events similar to the current state based on a measure of distance. The k-
NN output values, simple average or weighted averaging, are used to generate forecasts.
Consequently, specialists can evaluate the k-NN method’s outcomes. In k-NN numerical
prediction, the object’s predictable variable is the average value of its k nearest neighbors.
The k-NN algorithm is a fundamental and effective tool for machine learning [48].

The LSTM model is an improved artificial neural network model that may be used to
solve a variety of problems, as detailed in [49]. The primary advantage of the LSTM is its
ability to retain information for an extended period of time. Figure 1 illustrates the LSTM
design. The LSTM model’s initial step is to determine which data from the cell state should
be disregarded. As seen in Equation (1), this is accomplished using a forget gate or sigmoid
layer.

ft = σ(b f + W f [ht−1, xt]) (1)
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Figure 1. Architecture of LSTM Neural Network.

The new data to be stored in the cell state should be determined. The sigmoid layer
determines which values require updating, and the tanh layer adds the new candidate to
the produced state, as described in Equations (2) and (3).

it = σ(bi + Wi[ht−1, xt]) (2)

C′t = tanh(bi + Wi[ht−1, xt]) (3)

The old cell state, Ct−1, is updated into the new cell state, Ct, based on the following
equation using Equations (1)–(3).

Ct = it × C′t + ft × Ct−1 (4)

The cell state will then multiply the sigmoid gate output by tanh and force values
between [−1,1].

ht = ot × tanh(Ct), ot = σ(bo + Wo[ht−1, xt]) (5)

2.3. Dipper Throated Optimization (DTO)

Among passerines, dipper throated birds are unusual. They are excellent swimmers,
divers, and hunt underwater. Additionally, their flexible and small wings enable them to
fly straight and fast without glides or pauses. The algorithm based on the dipper throated
birds’ (DTO) behavior assumes that birds fly and swim in search of food supplies, with N f s
representing the number of birds. Birds’ positions are marked by BP, while BV denotes
their velocities. The parameters BP and BV are denoted as follows [50]:

BP =


BP1,1 BP1,2 BP1,3 . . . BP1,d
BP2,1 BP2,2 BP2,3 . . . BP2,d
BP3,1 BP3,2 BP3,3 . . . BP3,d

. . . . . . . . . . . . . . .
BPn,1 BPn,2 BPn,3 . . . BPn,d

 (6)

BV =


BV1,1 BV1,2 BV1,3 . . . BV1,d
BV2,1 BV2,2 BV2,3 . . . BV2,d
BV3,1 BV3,2 BV3,3 . . . BV3,d

. . . . . . . . . . . . . . .
BVn,1 BVn,2 BVn,3 . . . BVn,d

 (7)

where BPi,j denotes ith position of bird in the jth dimension and BVi,j denotes ith bird
velocity in the jth dimension. The initial locations of BPi,j are distributed uniformly between
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the lower and higher boundaries. The fitness values fn are calculated as shown in the
accompanying array.

f =


f1(BP1,1, BP1,2, BP1,3, . . . , BP1,d)
f2(BP2,1, BP2,2, BP2,3, . . . , BP2,d)
f3(BP3,1, BP3,2, BP3,3, . . . , BP3,d)

. . .
fn(BPn,1, BPn,2, BPn,3, . . . , BPn,d)

 (8)

Following that, these values are arranged ascendingly. BPbest is declared as the first
best solution. The remainder of the answers is expected to be regular birds BPnd for follower
birds. BPGbest is declared to be the global best solution. The term R is a random value
within [0, 1] and is employed in the DTO algorithm to switch between swimming and flying
birds. If R < 0.5, the birds are considered to be swimming birds, and their positions are
changed as

BPnd(t + 1) = BPbest(t)−C1.|C2.BPbest(t)− BPnd(t)| (9)

where BPbest(t) is the best bird’s position at iteration t and BPnd(t) is a bird’s position.
The parameters of C1 and C2 are calculated as follows.

C1 = 2C.r1 − C,

C2 = 2r1,

C = 2(1−
(

t
Tmax

)2
)

(10)

where C changes exponentially from 2 to 0, parameter of r1 has a random value within
[0, 1] and maximum number of iterations is denoted as Tmax.

If R ≥ 0.5, the birds are considered to be flying birds and their positions are updated
as follows:

BPnd(t + 1) = BPnd(t) + BV(t + 1) (11)

The updated bird’s velocity, denoted as BV(t + 1), is calculated as

BV(t + 1) =C3BV(t) + C4r2(BPbest(t)− BPnd(t))+

C5r2(BPGbest − BPnd(t))
(12)

where C3 is a weight value, C4 and C5 are constants. BPGbest represents global best position
(best of all agents in the population) and r2 parameter value is within [0; 1]. The DTO
algorithm is explained step by step in Algorithm 1 [50].

2.4. Gravitational Search Algorithm (GSA)

The GSA algorithm was proposed based on Newton’s laws of motion and gravity and
was applied for Solar Radiation Forecasting in [51]. The position and gravitational masses
(inertial, active, and passive) represent the main attributes for each agent in this algorithm.
A problem’s solution is described by these attributes and decided by a fitness function.
In GSA, the agent’s position is defined as in the following equation.

xi =
(

x1
i , . . . , xd

i , . . . , xN
i

)
, i = 1, 2, . . . , n (13)

where xd
i indicates ith agent position in dth dimension of N dimensions and n is number of

agents (masses). The xd
i (t), the position of each agent, is updated as

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (14)
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where vd
i (t), the velocity of an agent, is calculated as

vd
i (t + 1) = randi.vd

i (t) + ad
i (t) (15)

where randi is a random value in [0, 1]. The acceleration of agent i in dth direction, denoted
as ad

i (t), is updated using the ith agent inertial mass, denoted as Mii(t), as

ad
i (t) =

Fd
i (t)

Mii(t)
(16)

Algorithm 1 DTO Algorithm.

1: Initialization positions of agents BPi(i = 1, 2, . . . , n) with n agents, velocities of agents
BVi(i = 1, 2, . . . , n), maximum iterations Tmax, objective function fn, parameters of r1,
r2, C1, C2, C3, C4, C5, C, R, t = 1

2: Obtain fn for each agent BPi
3: Find best agent BPbest
4: while t ≤ Tmax do
5: for (i = 1 : i < n + 1) do
6: if (R < 0.5) then
7: Update current swimming agent position as

BPnd(t + 1) = BPbest(t)−C1.|C2.BPbest(t)− BPnd(t)|
8: else
9: Update current flying agent velocity as

BV(t + 1) = C3BV(t) + C4r2(BPbest(t)− BPnd(t)) + C5r2(BPGbest − BPnd(t))
10: Update current flying agent position as

BPnd(t + 1) = BPnd(t) + BV(t + 1)
11: end if
12: end for
13: Obtain fn for each agent BPi
14: Update C1, C2, C, R
15: Find best agent BPbest
16: Set BPGbest = BPbest
17: Set t = t + 1
18: end while
19: Return BPGbest

Total gravitational force, denoted as Fd
i (t), is calculated as

Fd
i (t) =

N

∑
j=1,j 6=i

randjFd
ij(t) (17)

where randj is a random value in [0, 1]. The force acting on mass i from mass j, denoted as
Fd

ij(t), is updated by the following equation.

Fd
ij(t) = G(t)

Mpi(t)×Maj(t)
||xi(t), xj(t)||2 + ε

(xd
j (t)− xd

i (d)) (18)

where Mpi represents passive gravitational mass for agent i and Maj represents active
gravitational mass for agent j. The G(t) parameter indicates the gravitational constant
at time t and ε represents a constant value. The term ||xi(t), xj(t)||2 denotes Euclidean
distance between agent i and agent j.

The fitness evaluation computes gravitational and inertia masses. The values of
masses are computed using the fitness map, assuming that the gravitational and iner-
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tia mass are identical. The gravitational and inertial masses are revised by using the
following equations:

Mpi = Maj = Mii = Mi, i = 1, 2, . . . , N (19)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

, mi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

(20)

where fiti(t) indicates the agent i fitness value at iteration t. For a minimization problem,
worst(t) and best(t) are calculated as in the following equations.

best(t) = minj∈{1,...,N}fitj(t) (21)

worst(t) = maxj∈{1,...,N}fitj(t) (22)

The GSA algorithm is explained step by step in Algorithm 2. Since all possible solutions
are used to update the position of each solution, the GSA algorithm exhibits an extremely
exploratory nature. Each solution in a rotation can affect the others depending on their
distances and quality. However, the precision of this approach is frequently suboptimal.

Algorithm 2 GSA Algorithm.

1: Initialization positions of agents xi(i = 1, 2, . . . , n) with n agents, maximum iterations
Tmax, objective function fn, parameters of randi, randj, t = 1

2: Obtain fn for each agent xi
3: Find best agent xbest
4: while t ≤ Tmax do
5: for (i = 1 : i < n + 1) do
6: Update gravitational and inertia masses by Equations (19) and (20)
7: Update acceleration of current agent by

ad
i (t) =

Fd
i (t)

Mii(t)
8: Update velocity of current agent by

vd
i (t + 1) = randi.vd

i (t) + ad
i (t)

9: Update position of current agent by
xd

i (t + 1) = xd
i (t) + vd

i (t + 1)
10: end for
11: Obtain fn for each agent xi
12: Update randi, randj, t = t + 1
13: Find best agent xbest
14: Set xGbest = xbest
15: end while
16: Return xGbest

3. Proposed Methodology
3.1. Proposed GSDTO Algorithm

The proposed Gravitational Search Dipper Throated optimization (GSDTO) algorithm
is presented in Algorithm 3 step by step. The GSDTO algorithm covers the disadvantages
of the DTO and GSA algorithms and combines their advantages to achieve the best global
solution. The algorithm starts with initializing the positions of predetermined n agents
xi(i = 1, 2, . . . , n) and their velocities vi(i = 1, 2, . . . , n). It sets the allowed iterations for
the execution process as Tmax, the objective function fn, the DTO parameters of r1, r2, C1,
C2, C3, C4, C5, C, R, and the GSA parameters of randi and randj. The term randGSDTO is a
random value within [0, 1].
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Algorithm 3 Proposed GSDTO Algorithm.

1: Initialization positions of agents xi(i = 1, 2, . . . , n) with n agents, velocities of agents
vi(i = 1, 2, . . . , n), maximum number of iterations Tmax, objective function fn, parame-
ters of r1, r2, C1, C2, C3, C4, C5, C, R, randi, randj, randGSDTO, t = 1

2: Obtain fn for each agent xi
3: Find best agent xbest
4: Set xGbest = xbest
5: while t ≤ Tmax do
6: if (randGSDTO > 0.5) then
7: for (i = 1 : i < n + 1) do
8: if (R < 0.5) then
9: Update current swimming agent position by

x(t + 1) = xbest(t)−C1.|C2.xbest(t)− x(t)|
10: else
11: Update current flying agent velocity by

v(t + 1) = C3v(t) + C4r2(xbest(t)− x(t)) + C5r2(xGbest − x(t))
12: Update current flying agent position by

x(t + 1) = x(t) + v(t + 1)
13: end if
14: end for
15: else
16: for (i = 1 : i < n + 1) do
17: Update gravitational and inertia masses by Equations (29) and (30)

18: Update acceleration of current agent by a(t) =
F(t)

Mii(t)
19: Update velocity of current agent by Equation (27)
20: Update position of current agent by Equation (26)
21: end for
22: end if
23: Obtain fn for each agent xi
24: Update C1, C2, C, R, randi, randj, randGSDTO
25: Find best agent xbest
26: Set xGbest = xbest
27: Set t = t + 1
28: end while
29: Return best agent xGbest

If randGSDTO > 0.5, the GSDTO algorithm starts to update the positions and veloc-
ities of agents as in the following equations. The positions will be updated considering
swimming agent if R < 0.5 by

x(t + 1) = xbest(t)−C1.|C2.xbest(t)− x(t)| (23)

Otherwise, agents will be considered as flying agents and the positions is updated as

x(t + 1) = x(t) + v(t + 1) (24)

where v(t + 1), updated velocity of each agent, will be calculated as

v(t + 1) = C3v(t) + C4 r2(xbest(t)− xnd(t)) + C5r2(xGbest − x(t)) (25)

If randGSDTO ≤ 0.5, the GSDTO algorithm will update the positions and velocities of
the agents according to the following equations. The x(t), position of each agent at iteration
t, will be calculated as follows.

x(t + 1) = x(t) + v(t + 1), (26)
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where v(t), velocity of each agent at iteration t, is changed as

v(t + 1) = randi.v(t) + a(t) (27)

where the parameter a(t), acceleration of each agent at iteration t, changes as

a(t) =
F(t)

Mii(t)
(28)

The values of masses are computed using the fitness map for a minimization problem,
assuming that the gravitational and inertia mass are identical by the following equations:

Mpi = Maj = Mii = Mi, i = 1, 2, . . . , N (29)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(30)

mi(t) =
fiti(t)−maxj∈{1,...,N}fitj(t)

minj∈{1,...,N}fitj(t)−maxj∈{1,...,N}fitj(t)
(31)

where fiti(t) indicates the agent i fitness value at iteration t.
The GSDTO algorithm’s computational complexity in this work is expressed as follows.

For iterations Tmax and n number of agents, the complexity is defined as

• Initialize parameters of the GSDTO algorithm, xi(i = 1, 2, . . . , n), vi(i = 1, 2, . . . , n),
Tmax, C1, C2, C3, C4, C5, r1, r2, C, R, randi, randj, randGSDTO, and t = 1: O(1).

• Calculate fn for each agent xi: O(n).
• Obtain the best agent xbest: O (n).
• Update current swimming agent position: O(Tmax × n).
• Update current flying agent velocity: O(Tmax × n).
• Update current flying agent position: O(Tmax × n).
• Update acceleration of current agent ai(t): O(Tmax × n).
• Update velocity of current agent vi(t + 1): O(Tmax × n).
• Update position of current agent xi(t + 1): O(Tmax × n).
• Calculate fn for each agent xi: O(Tmax).
• Update C1, C2, C, R, randi, randj, randGSDTO: O(Tmax).
• Obtain best agent xbest: O(Tmax).
• Set xGbest = xbest: O(Tmax).
• Set t = t + 1: O(Tmax).
• Obtain global best agent xGbest: O(1)

Based on the above analysis of the GSDTO algorithm, the computation complexity is
set to O(Tmax × n) and it will be O(Tmax × n× d) for d dimension.

3.2. Proposed Binary GSDTO Algorithm

The solutions of the GSDTO algorithm will be strictly binary, with values of 0 or 1,
in case of feature selection issues. Thus, the continuous values of the proposed GSDTO
algorithm will be transformed to binary [0, 1] to facilitate the feature selection process from
the dataset. This study employs the following equation, which is based on the Sigmoid
function [52].

xt+1
d =

{
1 if Sigmoid(m) ≥ 0.5
0 otherwise

,

Sigmoid(m) =
1

1 + e−10(m−0.5)
,

(32)
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where xt+1
d , at iteration t and dimension d, denotes the binary solution. The Sigmoid

function can scale the output solutions to be binary ones. If Sigmoid(m) ≥ 0.5, this
will change the value to 1; otherwise, the value will be 0. The m parameter reflects the
algorithm’s selected features. Figure 2 shows how the Sigmoid function scales the output
solutions to binary [0, 1]. The binary GSDTO algorithm is described in detail in Algorithm 4.
By analyzing the bGSDTO algorithm, the computation complexity is set to O(tmax × n) and
it will be O(tmax × n× d) for d dimension.

Figure 2. Sigmoid function to scale the output solutions to binary [0, 1].

Algorithm 4 Proposed Binary GSDTO Algorithm.

1: Initialization parameters of the GSDTO
2: Convert solution to binary [0 or 1]
3: Obtain fitness for each agent and Find best agent
4: while t ≤ Tmax do
5: if (randGSDTO > 0.5) then
6: for (i = 1 : i < n + 1) do
7: if (R < 0.5) then
8: Update current swimming agent position
9: else

10: Update current flying agent velocity and position
11: end if
12: end for
13: else
14: for (i = 1 : i < n + 1) do
15: Update gravitational and inertia masses
16: Update acceleration of current agent
17: Update velocity and position of current agent
18: end for
19: end if
20: Convert updated solution to binary
21: Obtain fitness for each agent and Find best agent
22: Update parameters
23: end while
24: Return best solution

3.3. Proposed GSDTO+LSTM Based Model

Figure 3 shows the proposed model based on the presented GSDTO algorithm. The pro-
posed GSDTO+LSTM-based model is constructed based on two main phases: feature
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selection and classification. The first phase of the proposed model focuses on preprocessing
and feature selection. The preprocessing is interesting in cleaning and normalizing the
tested dataset, including correlation analysis, feature scaling, and removing null values.
Feature selection in this phase is performed after cleaning the dataset. The binary version
of the proposed GSDTO algorithm is employed in this step for selecting the best number
of features from the total number of attributes in the tested dataset. The validation of this
phase, to confirm the quality of the bGSDTO algorithm in feature selection, is performed in
the experiments using feature selection performance metrics, including average error and
standard deviation.

Figure 3. Proposed feature selection and classification model based on the proposed GSDTO algo-
rithm.

The second phase, the intermediate phase in Figure 3, which is utilized to compare
results, includes applying the base models of NN, k-NN, and RF for the selected features in
phase one. The output results of the three base classifiers in phase two are recorded to be
compared with the GSDTO+LSTM model classification results in the third phase. The last
stage of the proposed GSDTO+LSTM-based model, the classification phase, includes opti-
mizing the LSTM model parameters by the presented GSDTO algorithm. The classification
in the third phase of the model is applied based on the selected features in phase one,
and the output results are compared with the results of phase two as the final results of
this model.
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4. Experimental Results

This section explains the results of this study in detail. The experiments are divided
into three scenarios. The first scenario discusses the feature selection ability of the pro-
posed bGSDTO algorithm for the tested dataset, while the second scenario shows the
presented algorithm’s ability for classification purposes. In the third and last scenario,
the GSDTO+LSTM algorithm’s diagnostic accuracy is examined using randomly selected
data from the total number of samples.

4.1. Feature Selection Scenario

The binary version of the proposed (GSDTO) algorithm is used for feature selection
from the tested dataset as mentioned in Figure 3. In the first scenario, the feature selection
results of this study’s presented GSDTO algorithm are discussed. Table 3 shows the GSDTO
algorithm configuration of all parameters used in the experiment, while Table 4 presents
the compared algorithms configuration. The binary GSDTO (bGSDTO) algorithm is tested
compared to PSO [31], GWO [32], WOA [33], BBO [34], FA [35], GA [36], and BA [37].

Table 3. Configuration parameters of the GSDTO algorithm.

Parameter (s) Value (s)

# Agents 10
# Iterations 80
# Repetitions 20
Dimension # features
C [0, 2]
R [0, 1]
α of Fn 0.99
β of Fn 0.01

Table 4. Configuration parameters of the compared algorithms.

Algorithm Parameter (s) Value (s)

PSO Wmax, Wmin [0.9, 0.6]
C1, C2 [2, 2]

GWO a 2 to 0
WOA a 2 to 0

r [0, 1]
BBO Habitat modification Probability 1.0

Mutation Probability 0.05
Immigration Probability [0, 1]
Migration rate 1.0
Max immigration 1.0
Step size 1.0

BA Pluse rate 0.5
Loudness 0.5
Frequency [0, 1]

GA Crossover 0.9
Mutation ratio 0.1
Mechanism of Selection Roulette wheel

FA # Fireflies 10
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The objective equation, fn, is used to determine the quality of a solution in the binary
GSDTO algorithm. fn is employed in the following equation for a classifier’s error rate, Err,
a number of selected features, s, and a number of missing features, S, as follows.

fn = αErr + β
|s|
|S| (33)

where α ∈ [0, 1] and β = 1− α indicate the population relevance of the given feature.
The approach is satisfactory if it can provide a subset of features capable of producing a
low classification error rate. K-nearest neighbor (k-NN) is a widely used, straightforward
classification technique. The goodness of the chosen features is ensured in this method by
using the k-NN as a classifier. The only factor used to determine classifiers is the smallest
distance between the query instance and the training examples; no model for K-nearest
neighbors is used in this experiment.

In Table 5, the performance metrics employed to measure the feature selection results
of the proposed algorithm are presented. The variables mentioned in Table 5 are: number
of runs of the optimizer, M, best solution at run j, g∗j , the g∗j vector size, size(g∗j ), number
of features, D, and N as number points, the output label of the classifier for a point i, Ci,
the label of class for a point i, Li, and the Match function for matching calculation between
two inputs.

Table 5. Feature selection performance metrics.

Metric Value

Average Error 1− 1
M ∑M

j=1
1
N ∑N

i=1 Match(Ci, Li)

Average Select Size 1
M ∑M

j=1

size(g∗j )

D
Average Fitness 1

M ∑M
j=1 g∗j

Best Fitness MinM
j=1g∗j

Worst Fitness MaxM
j=1g∗j

Standard Deviation
√

1
M−1 ∑(g∗j −Mean)2

The suggested and compared algorithms’ feature selection results, based on 20 runs
and 80 iterations for ten agents as mentioned in Table 3, are provided in Table 6. The mini-
mum average error of (0.1969) and the standard deviation of (0.0824) show the performance
of the presented bGSDTO algorithm. The second best algorithm in feature selection of
the tested data, minimum average error, is bGWO with (0.2141), followed by bBBO with
(0.2161) and then bGA with (0.2277). The worst algorithm in feature selection is the bBA
algorithm, with an average error of (0.2575). The selected features by the proposed algo-
rithm from the tested dataset total features are named (H2), (CH4), (C2H6), (C2H4), (C2H2),
and (ACT).

Table 6. Presented bGSDTO and compared algorithms feature selection results.

bGSDTO bGWO bPSO bBA bWOA bBBO bFA bGA

Average error 0.1969 0.2141 0.2479 0.2575 0.2477 0.2161 0.2463 0.2277
Average Select size 0.1497 0.3497 0.3497 0.4891 0.5131 0.5135 0.3842 0.2921
Average Fitness 0.2601 0.2763 0.2747 0.2976 0.2825 0.2804 0.3266 0.2877
Best Fitness 0.1619 0.1966 0.255 0.1873 0.2466 0.2701 0.2453 0.191
Worst Fitness 0.2604 0.2635 0.3227 0.2889 0.3227 0.3566 0.3429 0.3061
Standard deviation Fitness 0.0824 0.0871 0.0865 0.0964 0.0887 0.1314 0.1233 0.0887
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The statistical analysis, using a one-way analysis of variance (ANOVA) and Wilcoxon
Signed Rank tests, is conducted to determine the performance of the proposed binary
GSDTO algorithm based on the average error. Wilcoxon’s test is utilized to determine the
p-values comparing the suggested algorithm to other algorithms. This statistical test can
assess whether or not there is a significant difference between the results of the proposed
algorithm and those of other algorithms with a p-value < 0.05. To determine whether there
is a statistically significant difference between the suggested algorithm and other algorithms
analyzed, an ANOVA test was also conducted. The ANOVA test results for the suggested
versus compared algorithms are shown in Table 7, while Table 8 compares the proposed
and compared algorithms using the Wilcoxon Signed-Rank test. The statistical analysis is
performed using 20 runs of the presented and compared algorithms for fair comparisons.

Table 7. Presented bGSDTO versus compared algorithms ANOVA test results.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.06262 7 0.008946 F (7, 152) = 173.9 p < 0.0001
Residual (within columns) 0.007819 152 0.00005144 - -
Total 0.07044 159 - - -

Table 8. Presented bGSDTO and compared algorithms Wilcoxon Signed-Rank test results.

bGSDTO bGWO bPSO bBA bWOA bBBO bFA bGA

Theoretical median 0 0 0 0 0 0 0 0
Actual median 0.1969 0.2141 0.2479 0.2575 0.2477 0.2161 0.2463 0.2277
# Values 20 20 20 20 20 20 20 20
Wilcoxon Signed Rank Test
Signed ranks’ sum 210 210 210 210 210 210 210 210
Positive ranks’ sum 210 210 210 210 210 210 210 210
Negative ranks’ sum 0 0 0 0 0 0 0 0
P value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes
Discrepancy 0.1969 0.2141 0.2479 0.2575 0.2477 0.2161 0.2463 0.2277

Figure 4 uses the convergence curve for comparing the provided and comparable al-
gorithms in feature selection. During the population initialization of the GSDTO algorithm
and compared algorithm, the number of agents is set to 10, and the number of iterations is
set to 80. The distribution of agents is then set randomly for fair comparisons, as shown in
Figure 4. The proposed GSDTO algorithm shows fast convergence than other algorithms.
Figure 5 also depicts the average error versus objective function for the provided and
compared algorithms. According to Figure 5, the proposed GSDTO algorithm shows better
results than other algorithms based on average error.



Mathematics 2022, 10, 3144 16 of 28

Figure 4. Feature selection comparison of the presented and compared algorithms based on
convergence curve.

The residual, QQ (quantile-quantile), homoscedasticity plots, and heat map of the
presented and comparative binary methods are shown in Figure 6. As opposed to the plot
of the original dataset, the potential issues can be seen in the residual values and plots.
Some datasets are poor categorization candidates. A residual plot places the independent
variable on the horizontal axis and the residual values on the vertical axis. If the residual
values are evenly and randomly distributed across the horizontal axis, the ideal scenario
is realized. When the mean and the total of the residuals are equal to zero, the residual
value is determined as (Actual value-Predicted value). The residual plot is displayed
in Figure 6. A residual plot’s plot patterns can be used to identify whether a model is
linear or nonlinear and which one is most appropriate. The homogeneity of variance or
heteroscedasticity is visually inspected together with the projected scores for the dependent
variable. A scenario known as homoscedasticity occurs when the error term, also known as
noise or random disturbance in the relationship between the dependent and independent
variables, is constant across all values of the independent variables. The accuracy of the
research findings is increased by the heteroscedasticity plot, which is depicted in Figure 6.
It can immediately and readily identify any violation.

Figure 5. The bGSDTO and compared algorithms’ average error versus objective function.
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Figure 6. Residual, QQ, homoscedasticity plots, and heat map of the bGSDTO and compared algorithms.

In Figure 6, the QQ plot is also displayed. An example is a probability plot. It is
mostly used to compare two probability distributions by graphing the quantiles against one
another. The point distributions in the QQ plot may be seen to roughly fit on the line in the
figure. As a result, the relationship between the actual and anticipated residuals is linear,
supporting the effectiveness of the suggested approach. The provided and compared algo-
rithms’ heat maps are displayed in Figure 6 as a data visualization tool. A two-dimensional
color scale’s intensity reveals an algorithm’s level of sophistication. With regard to how the
proposed method is superior to the comparable algorithms, the color variation provides
clear visual indications. These figures confirm the quality of the bGSDTO algorithm in
feature selection as mentioned in Figure 3.

4.2. Classification Scenario

The experiments’ second scenario discusses the classification results of the presented
GSDTO algorithm based on the LSTM classifier for 20 runs and 80 iterations using ten
agents as mentioned in Table 3. The basic classifiers of NN, k-NN, and RF models and
the proposed GSDTO algorithm-based LSTM method are applied to the selected features
from the tested dataset in phase 1 as mentioned in Figure 3. The classification results of
the proposed algorithm are compared with the WOA+LSTM, GWO+LSTM, GA+LSTM,
and PSO+LSTM based models and the basic models to show the performance of the
presented algorithm. There are four hyperparameters to train the LSTM model, which are
fed to the proposed algorithm (GSDTO). These hyperparameters are the size of attention
weights set Na, encoding length for each attention weights Le, size of champion attention
weights subset Wa, and number of epochs Te.

The performance metrics used in this part are the Mean Square Error (MSE) and the
Area Under the ROC Curve (AUC). Table 9 presents the configuration parameters of basic
classification models of NN, k-NN, and RF employed in this scenario. Table 10 shows
the signal/basic classification model results of AUC and MSE for the basic classification
models. The best results with the maximum AUC value of (0.797) and the minimum MSE
value of (0.04887) are achieved by the RF model, followed by the NN model and then the
k-NN model.
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Table 9. Parameters of basic classification models.

Classifier Parameter (s) Value (s)

NN beta_1 0.6
beta_2 0.899
epsilon 1 × 10−6

validation_fraction 0.1
learning_rate_init 0.007
hidden_layer_sizes 20

k-NN leaf_size 20
p 2
n_neighbors 3

RF min_weight_fraction_leaf 0.0
min_samples_leaf 1
n_estimators 40
min_samples_split 2

Table 10. Classification results of the three basic models for the tested dataset.

Model AUC MSE

NN 0.744 0.080226
K-NN 0.7387 0.098999
RF 0.797 0.04887

The classification results of the proposed and compared algorithms, based on op-
timizing the parameters of the LSTM model, are shown in Table 11. The results with
the maximum AUC value of (0.9826) and the minimum MSE value of (0.00001413) are
achieved by the GSDTO+LSTM model. The results show the model’s superiority compared
to the best basic classifier of the RF model, shown in Table 10, and the other models based
on the LSTM method in Table 11. The WOA+LSTM-based model achieves the second
best classification results with AUC of (0.957) and MSE of (0.000319), followed by the
PSO+LSTM-based model, GWO+LSTM-based model, and the GA+LSTM-based model
achieves the worst results.

Table 11. Proposed and compared algorithms classification results based on LSTM model.

GSDTO+LSTM WOA+LSTM GWO+LSTM GA+LSTM PSO+LSTM

AUC 0.9826 0.957 0.943 0.934 0.949
MSE 0.00001413 0.000319 0.0002158 0.0007382 0.0004196

The presented GSDTO+LSTM and compared classifiers statistical descriptions and
the Wilcoxon Signed-Rank test results are shown in Tables 12 and 13, respectively, based
on 20 runs and 80 iterations for 10 agents as mentioned in Table 3, for fair comparison.
This statistical test shows the significant difference between the results of the proposed
algorithm (GSDTO+LSTM) and those of other algorithms with a p-value < 0.05.
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Table 12. Proposed and compared classifiers description.

GSDTO+LSTM WOA+LSTM GWO+LSTM GA+LSTM PSO+LSTM

Number of values 20 20 20 20 20
Minimum 0.0000133 0.000124 0.000115 0.000641 0.000323
25% Percentile 0.0000133 0.000324 0.000215 0.000741 0.000423
Median 0.0000133 0.000324 0.000215 0.000741 0.000423
75% Percentile 0.0000133 0.000324 0.000215 0.000741 0.000423
Maximum 0.0000133 0.000424 0.0003315 0.0007854 0.000454
Range 0 0.0003 0.0002165 0.0001444 0.000131
10% Percentile 0.0000133 0.000324 0.000215 0.000741 0.000423
90% Percentile 0.0000133 0.000324 0.000215 0.000741 0.000423
Mean 0.0000133 0.000319 0.0002158 0.0007382 0.00042
Std. Deviation 0 0.00005104 0.00003521 2.494× 10−5 2.38× 10−5

Std. Error of Mean 0 0.00001141 7.874× 10−6 5.576× 10−6 5.32× 10−6

Coefficient of variation 0.000% 16.00% 16.32% 3.378% 5.666%
Geometric mean 0.0000133 0.000313 0.0002129 0.0007378 0.000419
Geometric SD factor 1 1.254 1.19 1.036 1.065
Harmonic mean 0.0000133 0.0003031 0.0002096 0.0007373 0.000418
Quadratic mean 0.0000133 0.0003229 0.0002185 0.0007386 0.00042
Skewness −2.751 0.7003 −3.067 −3.734
Kurtosis 13.14 9.729 14.07 16.45
Sum 0.000266 0.00638 0.004317 0.01476 0.008391

Table 13. Proposed and compared classifiers Wilcoxon Signed-Rank Test results.

GSDTO+LSTM WOA+LSTM GWO+LSTM GA+LSTM PSO+LSTM

Theoretical median 0 0 0 0 0
Actual median 0.0000133 0.000324 0.000215 0.000741 0.000423
# values 20 20 20 20 20
Wilcoxon Signed-Rank
Signed ranks’ Sum (W) 210 210 210 210 210
Positive ranks’ Sum 210 210 210 210 210
Negative ranks’ Sum 0 0 0 0 0
P value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Estimate or Exact? Exact Exact Exact Exact Exact
Significant (α = 0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.0000133 0.000324 0.000215 0.000741 0.000423

Figure 7 compares the presented and compared algorithms convergence curves based
on the LSTM model. The proposed GSDTO+LSTM algorithm shows faster convergence
than other algorithms. The box plot in Figure 8 indicates the MSE of the presented and
compared algorithms-based LSTM model. This figure shows that the GSDTO+LSTM
algorithm achieved minimum MSE results. Figure 9 shows the histogram of MSE for
the presented and compared algorithms using the LSTM model, based on the number of
values with the Bin Center range (0.0–0.00072), which confirms the stability of the proposed
algorithm. Figures 8 and 9 present the visualization of changing the agents impact for the
tested dataset for each run. Figure 10 shows the ROC curve for the presented GSDTO with
PSO and WOA algorithms based LSTM model.
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Figure 7. Comparison of the presented and compared algorithms convergence curves based
LSTM model.

Figure 8. MSE for the presented and compared algorithms based LSTM model.

Figure 9. Histogram for the presented and compared algorithms based LSTM model.
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Figure 10. ROC curve for the presented GSDTO with PSO and WOA algorithms based LSTM model.

The residual, QQ, homoscedasticity plots, and heat map of the presented and com-
pared algorithms based on the LSTM model are shown in Figure 11. The residual plot
places the independent variable on the horizontal axis and the residual values on the
vertical axis. The residual plot is displayed in Figure 11. The homogeneity of variance or
heteroscedasticity is visually inspected together with the projected scores for the dependent
variable and can identify any violation. The accuracy of the research findings is increased
by the heteroscedasticity plot, which is depicted in Figure 11. In Figure 11, the QQ plot is
displayed, and it is used to compare two probability distributions by graphing the quantiles
against one another. The point distributions in the QQ plot may be seen to roughly fit on the
line in the figure. As a result, the relationship between the actual and anticipated residuals
is almost linear, supporting the effectiveness of the suggested approach. The provided
and compared algorithms’ heat maps are displayed in Figure 11. A two-dimensional color
scale’s intensity reveals an algorithm’s level of sophistication. These figures confirm the
quality of the GSDTO+LSTM model as mentioned in Figure 3.

Figure 11. Residual, QQ, homoscedasticity plots, and heat map of the presented and compared
algorithms based on LSTM model.
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4.3. Validation and Discussion

The diagnostic accuracy of the suggested classification algorithm is compared to that
of various DGA algorithms in the literature in Table 14. As shown in Table 14, the proposed
classification algorithm has an overall diagnostic accuracy of 98.26 percent, which is higher
than the diagnostic accuracy of other DGA techniques. The adaptive and NPR methods,
which provide 94.6 and 90.54 percent accuracy, respectively, come close to the suggested
algorithm. On the other hand, other classic DGA procedures, such as the Rogers Ratio
method (45.95 percent), IEC 60599 (50 percent), and the Duval triangle method, have
low overall diagnostic accuracies (66.27 percent). The diagnostic accuracy results for the
suggested classification method indicated that it possesses a high capacity for correctly
diagnosing transformer defects.

Table 14. The 74 testing samples diagnostic accuracy of the suggested algorithm compared to
other techniques.

Fault Type Samples GSDTO+LSTM Adaptive [2] IEC-60599 [7] IEC 60599 Modified [27] Rog. Modified [27]

PD 7 100 100 28.57 100 100
D1 13 100 92.31 30.77 61.54 61.54
D2 24 95.83 91.67 41.67 87.5 79.17
T1 16 93.75 93.95 68.75 100 100
T2 4 100 100 75 100 100
T3 10 100 100 70 100 100
Overall 74 98.26 94.6 50 89.19 86.49

Fault Type Samples Duval [8,9] NPR [53] SVM [53] Rog. 4 Ratios [6]

PD 7 42.86 100 85.71 14.29
D1 13 69.23 76.92 76.92 0
D2 24 75 87.5 91.67 50
T1 16 56.25 100 100 100
T2 4 0 75 25 25
T3 10 100 100 100 40
Overall 74 66.27 90.54 87.84 45.95

5. Sensitivity Analysis of the GSDTO Parameters

This section explores the GSDTO’s parameter sensitivity analysis. The GSDTO consists
of five parameters: the R-Parameter, the exploration percentage, the population size,
the number of iterations, and the C-Parameter. These settings determine the performance of
the algorithm when solving the evaluated optimization problem in this work. Any change
to a parameter can influence the optimization technique. As a result, a sensitivity analysis
of these parameters is conducted.

5.1. One-at-a-Time Sensitivity Analysis

The sensitivity analysis has been conducted using the One-at-a-Time (OAT) sensitivity
measure [54]. OAT is recognized as one of the simplest strategies for sensitivity analysis.
OAT examines the performance of an algorithm by varying a single parameter while
leaving the others unchanged. Tables 15 and 16 detail the observed variations in GSDTO’s
time and fitness values as parameter values are adjusted. As shown in Tables 15 and 16,
we selected 20 distinct values within the interval of each parameter by adding 5% to its
length to generate a new evaluation value. Each of these variables underwent ten runs of
the algorithm, and the averages for time and fitness are displayed in the table.
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Table 15. Convergence time results for different values of the GSDTO’s parameters.

R-Parameter Exploration Percentage Population Size Iterations Count C-Parameter

Values Time Values Time Values Time Values Time Values Time

0.05 3.353 5 3.257 10 0.5 10 0.662 0.1 3.371
0.1 3.145 10 3.717 20 1.523 20 0.244 0.2 3.328
0.15 3.018 15 3.442 30 3.095 30 1.146 0.3 3.262
0.2 3.503 20 3.249 40 4.933 40 2.038 0.4 3.246
0.25 3.251 25 3.048 50 6.28 50 2.935 0.5 3.302
0.3 3.114 30 3.049 60 7.704 60 3.848 0.6 3.259
0.35 3.071 35 3.044 70 9.253 70 4.786 0.7 3.289
0.4 3.06 40 3.081 80 10.817 80 6.649 0.8 3.22
0.45 3.037 45 3.039 90 12.324 90 7.463 0.9 3.285
0.5 3.041 50 3.039 100 13.881 100 10.226 1 3.304
0.55 3.028 55 3.059 110 15.439 110 11.123 1.1 3.259
0.6 3.037 60 3.067 120 17.962 120 11.995 1.2 3.208
0.65 3.129 65 3.058 130 19.292 130 13.011 1.3 3.278
0.7 6.341 70 3.034 140 20.21 140 13.798 1.4 3.277
0.75 6.272 75 3.041 150 21.582 150 15.892 1.5 3.226
0.8 6.082 80 3.048 160 23.173 160 16.864 1.6 3.213
0.85 4.279 85 3.042 170 25.767 170 17.083 1.7 3.218
0.9 4.57 90 3.06 180 30.937 180 17.872 1.8 3.211
0.95 3.34 95 3.058 190 35.502 190 19.415 1.9 3.195
1 3.794 95 3.042 200 35.077 200 20.267 2 3.186

Table 16. Minimum Fitness results for different values of the GSDTO’s parameters.

R-Parameter Exploration Percentage Population Size Iterations Count C-Parameter

Values Fitness Values Fitness Values Fitness Values Fitness Values Fitness

0.05 −11.2816 5 −9.1386 10 −9.6506 50 −7.5286 0.1 −8.0656
0.1 −11.2816 10 −9.1376 20 −12.3506 100 −6.9926 0.2 −8.0656
0.15 −11.8186 15 −11.2846 30 −11.2826 150 −8.6006 0.3 −6.9926
0.2 −11.8206 20 −10.7486 40 −11.2856 200 −8.6026 0.4 −8.0626
0.25 −11.2836 25 −11.2806 50 −10.2126 250 −8.0656 0.5 −8.0656
0.3 −11.2846 30 −10.7486 60 −12.3586 300 −8.0656 0.6 −6.9926
0.35 −10.7476 35 −10.7486 70 −12.3586 350 −9.6756 0.7 −8.0656
0.4 −11.2856 40 −11.2856 80 −12.3586 450 −8.0656 0.8 −8.0616
0.45 −10.7486 45 −11.2846 90 −11.8226 500 −9.1386 0.9 −6.9926
0.5 −11.2846 50 −10.2126 100 −12.3586 650 −10.2126 1 −8.0656
0.55 −11.2846 55 −11.2856 110 −12.3586 700 −8.6026 1.1 −8.0656
0.6 −12.3556 60 −11.8206 120 −12.3586 750 −10.2126 1.2 −8.0656
0.65 −11.2846 65 −11.2836 130 −12.3586 800 −10.7486 1.3 −9.1386
0.7 −10.7476 70 −11.2846 140 −12.3586 850 −9.1386 1.4 −10.2116
0.75 −10.7466 75 −11.2856 150 −12.3586 900 −9.6756 1.5 −11.2836
0.8 −12.3546 80 −10.7476 160 −12.3586 950 −10.7486 1.6 −9.1386
0.85 −11.2366 85 −12.3556 170 −12.3586 1000 −10.2126 1.7 −10.2116
0.9 −11.8096 90 −11.2716 180 −12.3586 1050 −10.7486 1.8 −12.3576
0.95 −12.3196 95 −11.2746 190 −12.3586 1150 −9.6756 1.9 −11.2846
1 −12.3306 95 −11.8096 200 −12.3586 1200 −10.2126 2 −12.3586

5.2. Regression Analysis

It has been determined through regression analysis how the algorithm’s parameters
can explain algorithm performance variations. Regression analysis is appropriate when
we need to predict the value of a dependent variable (algorithm performance) based on
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the value of an independent variable (parameter). The results of the regression analysis for
the GSDTO parameters, convergence time, and fitness are shown in Table 17. The value
of R Square indicates the proportion of the total variance in time or fitness that can be
explained by the parameter values. According to Table 17, the number of iterations and
population size have the highest R Square value for convergence time, indicating that they
can explain any variation in convergence time exceptionally well. In contrast, the explo-
ration percentage and the R-Parameter can account for 60.3% and 78.5% of the variance
in convergence time, respectively. In Table 17, significance F values less than 0.05 indicate
that the regression model significantly predicts the algorithm’s performance. The GSDTO’s
parameters convergence time and minimum fitness versus objective function are shown in
Figure 12.

Table 17. Results of regression analysis for the GSDTO’s parameters.

Convergence Time Minimum Fitness

Parameters R Square Significance F R Square Significance F

R-Parameter 7.85× 10−1 1.44× 10−3 8.85× 10−1 9.16× 10−4

Exploration Percentage 6.03× 10−1 1.67× 10−5 6.40× 10−1 3.91× 10−3

Population Size 8.06× 10−1 1.70× 10−9 9.80× 10−1 4.59× 10−3

Iterations Count 8.23× 10−1 1.70× 10−11 7.44× 10−1 1.44× 10−5

C-Parameter 4.06× 10−1 1.24× 10−6 9.57× 10−1 9.16× 10−4

Figure 12. The GSDTO’s parameters convergence time and fitness versus objective function.

5.3. Statistical Significance

To determine whether there is a statistically significant difference between the means
of the observations in Tables 15 and 16, we conducted an ANOVA on convergence time
and fitness values while adjusting the GSDTO’s parameters. The results of the GSDTO’s
ANOVA test are shown in Table 18. All p-values in Table 18 are less than 0.05. There is a
statistically significant difference between the means of the five groups of convergence time
and the five groups of minimal fitness observed by adjusting parameter values. A T-test
with one tail was run at a significance level of 0.05. Table 19 provides the T-Test results for
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each observed pair of convergence time and minimum fitness parameters for GSDTO. In the
table, p-values less than 0.05 indicate a statistically significant difference between groups.

Table 18. ANOVA test results for the GSDTO’s parameters of Convergence time and Fitness.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 11.54 9 1.282 F (9, 190) = 2483 p < 0.0001
Residual (within columns) 0.0981 190 0.0005163 - -
Total 11.64 199 - - -

Table 19. T-test with one tail was run at a significance level of 0.05 for different values of the
GSDTO’s parameters.

Convergence Time

R-Parameter Exploration Percentage Population Size Iterations Count C-Parameter

Theoretical mean 0 0 0 0 0
Actual mean 0.7775 0.593 0.8025 0.828 0.421
Number of values 20 20 20 20 20
One sample t test
t, df t = 93.03, df = 19 t = 48.00, df = 19 t = 72.62, df = 19 t = 93.97, df = 19 t = 38.47, df = 19
p value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
p value summary **** **** **** **** ****
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.7775 0.593 0.8025 0.828 0.421
SD of discrepancy 0.03738 0.05525 0.04942 0.0394 0.04894
SEM of discrepancy 0.008357 0.01235 0.01105 0.008811 0.01094
95% confidence interval 0.7600 to 0.7949 0.5671 to 0.6189 0.7794 to 0.8256 0.8096 to 0.8464 0.3981 to 0.4439
R squared (partial eta squared) 0.9978 0.9918 0.9964 0.9979 0.9873

Minimum Fitness

R-Parameter Exploration Percentage Population Size Iterations Count C-Parameter

Theoretical mean 0 0 0 0 0
Actual mean 0.885 0.6412 0.9764 0.759 0.937
Number of values 20 20 20 20 20
One sample t test
t, df t = 122.0, df = 19 t = 87.20, df = 19 t = 188.8, df = 19 t = 57.81, df = 19 t = 80.10, df = 19
p value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
p value summary **** **** **** **** ****
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.885 0.6412 0.9764 0.759 0.937
SD of discrepancy 0.03244 0.03289 0.02313 0.05871 0.05231
SEM of discrepancy 0.007255 0.007353 0.005172 0.01313 0.0117
95% confidence interval 0.8698 to 0.9002 0.6258 to 0.6566 0.9656 to 0.9872 0.7315 to 0.7865 0.9125 to 0.9615
R squared (partial eta squared) 0.9987 0.9975 0.9995 0.9943 0.997

6. Conclusions and Future Work

This research proposed a novel meta-heuristic technique based on a dataset from
real-technical systems to classify the dissolved gas analysis (DGA) for transformer faults
diagnosis, which is one of the most vital elements in the electrical power system. Initially,
the suggested binary (GSDTO) technique is employed to choose features from the evaluated
dataset. The binary GSDTO (bGSDTO) method is evaluated against PSO, GWO, WOA,
BBO, FA, GA, and BA. A classifier based on the proposed GSDTO algorithm and LSTM
approach is then used on the tested dataset. Comparing the classification results with
WOA+LSTM, GWO+LSTM, GA+LSTM, and PSO+LSTM. The GSDTO+LSTM algorithm’s
diagnostic accuracy is also examined using randomly selected data. Based on the statistical
investigation, the robustness of the built model was examined. The results demonstrated
that the developed model increased the diagnostic accuracy for all test cases to 98.26%.
The sensitivity analysis of the GSDTO’s parameters, R-Parameter, exploration percentage,
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population size, number of iterations, and C-Parameter, confirm the performance of the
algorithm. In the future, the binary GSDTO method and the GSDTO+LSTM-based classifi-
cation algorithm can be generalized and evaluated on various datasets. Some additional
experiments will be done to evaluate the scalability, runtime, and memory for the presented
GSDTO+LSTM algorithm.
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